Shishi

Kerberos 5 implementation for the GNU system
for version 1.0.1, 8 February 2012

Simon Josefsson

This manual is last updated 8 February 2012 for version 1.0.1 of Shishi.
Copyright (©) 2002-2012 Simon Josefsson.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Table of Contents

1 Introduction................... 1
1.1 Getting Started 1
1.2 Features and Status...........cooviiiiiiiiiiiiii i, 1
1.3 OVEIVIEW ottt e e e 3
1.4 Cryptographic OvVerview.ottt 5
1.5 Supported Platforms i i 8
1.6 Getting helpo 10
1.7 Commercial SUpportc.ooiiiiiiiii i 10
1.8 Downloading and Installing 10
1.9 Bug Reports oo 11
1.10 Contributing.oe i e 12

2 UserManual................................... 13
2.1 Proxiable and Proxy Tickets, 15
2.2 Forwardable and Forwarded Tickets........................... 16

3 Administration Manual 18
3.1 Introduction to Shisa...............ccoiiiiiiiiiiiiii... 18
3.2 Configuring Shisa....... ... i 18
3.3 Using Shisaoouuiii 19
3.4 Starting Shishid........o 23
3.5 Configuring DNS for KDC i 25

3.5.1 DNS vs. Kerberos - Case Sensitivity of Realm Names..... 25
3.5.2 Overview - KDC location information 25
3.5.3 Example - KDC location information..................... 26
3.5.4 Security considerations............. ... oo, 26
3.6 Kerberos via TLS 26
3.6.1 Setting up TLS resume. ..., 26
3.6.2 Setting up Anonymous TLS 27
3.6.3 Setting up X.509 authenticated TLS...................... 28
3.6.3.1 Create a Kerberos Certificate Authority 28
3.6.3.2 Create a Kerberos KDC Certificate 29
3.6.3.3 Create a Kerberos Client Certificate 31
3.6.3.4 Starting KDC with X.509 authentication support 32

3.7 Multiple SErvers. 33
3.8 Developer information................coiiiiiiii i 35

4 Reference Manual 36
4.1 Environmental Assumptions..............coiiiiiiiiii.. 36
4.2 Glossary of terms ... 36
4.3 Realm and Principal Naming................, 38

4.3.1 Realm Namesooiiiii i 38

4.3.2 Principal Names i 39
4.3.2.1 Name of server principals............................ 40
4.3.2.2 Nameofthe TGS o i, 41

4.3.3 Choosing a principal with which to communicate 41

4.3.4 Principal Name Form L 42

4.4 Shishi Configurationc.cooiiiiiiiiieiiiii ... 42

4.4.1 ‘default-realm’coiiiiiiiiiiiiiiiiiiii 42

4.4.2 ‘default-principal’t 43

4.4.3 ‘client-Kdc—etypes’c.c.iiiiiiiiiiii i 43

4.4.4 ‘verbose’, ‘verbose-asnl’, ‘verbose-noise’,

‘verbose-crypto’, ‘verbose-crypto-noise’................ 43
445 ‘realm—KAC 43
4.4.6 ‘server-reallciiiiiiiiiii 43
4.4.7 ‘kdc-timeout’, ‘kdc-retries’......... 43
4.4.8 ‘Stringprocess’ ... 44
4.4.9 ‘ticket—life 44
4410 ‘remew-life’. 44
4.5 Shisa Configuration oo 45

5 T T« | P 45
4.6 Parameters for shishi......... o 46
4.7 Parameters for shishid 47
4.8 Parameters for shisa i i 48
4.9 Environment variables 50
4.10 Date input formatso 50

4.10.1 General date syntax...........ccoiuiiiiiiiiiiaiien.. 50

4.10.2 Calendar date items..............ooiiiiiiiiii i, 52

4.10.3 Time of day items..........coviiiiiiiii .. 52

4.10.4 Time zone itemsovuuiiiiii i 53

4.10.5 Combined date and time of day items 53

4.10.6 Day of week items.........o i 54

4.10.7 Relative items in date strings................ 54

4.10.8 Pure numbers in date strings................. ... L 55

4.10.9 Seconds since the Epoch L 55

4.10.10 Specifying time zone rules................l 56

4.10.11 Authors of parse_datetime............................ 56

5 Programming Manual......................... 57
5.1 Preparation...........ccooiiiiiiiii 57

5.1.1 Header. ... e o7

5.1.2 Initializationo 57

5.1.3 Version Check......... .o 57

5.1.4 Building the source.......... ... i i 58

5.1.5 Autoconf tests ... 58
5.1.5.1 Autoconf test via ‘pkg-config’............. 58
5.1.5.2 Standalone Autoconf test using Libtool.............. 59
5.1.5.3 Standalone Autoconf test................, 59

5.2 Initialization Functions............ i 60

5.3 Ticket Set FUnctionst 64

ii

5.4 AP-REQ and AP-REP Functions.............................. 70

5.5 SAFE and PRIV Functions, 91
5.6 Ticket Functions.......... oo 102
5.7 ASFunctions 113
5.8 TGS Functionsooouiiiii i 118
5.9 Ticket (ASN.1) Functions.............ooevuiiieiiiininininen., 124
5.10 AS/TGS Functions ..., 130
5.11 Authenticator Functions, 152
512 KRB-ERROR Functions.............c.coooiiiiiiiiiiiiiain... 161
5.13 Cryptographic Functions................ ... o oL 172
5.14 X509 Functions 199
5.15 Utility Functions.o i 201
516 ASN.1 Functions.c.ouuuiiiniii i 208
5.17 FError Handlingo i 220
5.17.1 Error Values....... ... 220
5.17.2 Error Functions.......... ... 221
5.18 Examples.oooiiii e 223
5.19 Kerberos Database Functions 224
5.20 Generic Security Service ... 231
6 Acknowledgements........................ ... 232
Appendix A Criticism of Kerberos........... 233
Appendix B Protocol Extensions............. 234
B.1 STARTTLS protected KDC exchanges....................... 234
B.1.1 TCP/IP transport with TLS upgrade (STARTTLS)..... 234
B.1.2 Extensible typed hole based on reserved high bit........ 235
B.1.3 STARTTLS requested by client (extension mode 1) 235
B.1.4 STARTTLS request accepted by server (extension mode 2)
... 235
B.1.5 Proceeding after successful TLS negotiation............. 235
B.1.6 Proceeding after failed TLS negotiation................. 236
B.1.7 Interaction with KDC addresses in DNS 236
B.1.8 Using TLS authentication logic in Kerberos............. 236
B.1.9 Security considerations i 236
B.2 Telnet encryption with AES-CCM 236
B.2.1 Command Names and Codes................., 236
B.2.2 Command Meanings............c.oooeiiiiiiiiiiiiann. 237
B.2.3 Implementation Rules 237
B.2.4 Integration with the AUTHENTICATION telnet option
... 238
B.2.5 Security Considerations.............. ..o, 238
B.2.5.1 Telnet Encryption Protocol Security Considerations
.. 239
B.2.5.2 AES-CCM Security Considerations................. 239

B.2.6 Acknowledgments............ ... 239

B.3 Kerberized rsh and rlogin................ ... i 239

B.3.1 Establish connection............ 239

B.3.2 Kerberos identification........... ..., 240

B.3.3 Kerberos authentication 240

B.3.4 Extended authentication................................ 240

B.3.5 Window size. 241

B.3.6 End of authentication................oiiiiiiiii.. 241

B.3.7 Encryption......... ..o 241

B.3.8 KCMDVO.3. .. 242

B.3.9 MIT/Heimdal authorization 243

B.4 Key as initialization vectorl 243
B.5 The Keytab Binary File Format 244
B.6 The Credential Cache Binary File Format.................... 247
Appendix C Copying Information............ 250
C.1 GNU Free Documentation License 250
Function and Data Index........................ 258

Concept Index.............. i, 265

Chapter 1: Introduction 1

1 Introduction

Shishi is an implementation of the Kerberos 5 network authentication system, as specified
in RFC 4120. Shishi can be used to authenticate users in distributed systems.

Shishi contains a library ('libshishi’) that can be used by application developers to add
support for Kerberos 5. Shishi contains a command line utility (’shishi’) that is used by
users to acquire and manage tickets (and more). The server side, a Key Distribution Center,
is implemented by ’shishid’. Of course, a manual documenting usage aspects as well as the
programming API is included.

Shishi currently supports AS/TGS exchanges for acquiring tickets, pre-authentication,
the AP exchange for performing client and server authentication, and SAFE/PRIV for
integrity /privacy protected application data exchanges.

Shishi is internationalized; error and status messages can be translated into the users’ lan-
guage; user name and passwords can be converted into any available character set (normally
including ISO-8859-1 and UTF-8) and also be processed using an experimental Stringprep
profile.

Most, if not all, of the widely used encryption and checksum types are supported, such
as 3DES, AES, ARCFOUR and HMAC-SHAL.

Shishi is developed for the GNU/Linux system, but runs on over 20 platforms includ-
ing most major Unix platforms and Windows, and many kind of devices including iPAQ
handhelds and S/390 mainframes.

Shishi is free software licensed under the GNU General Public License version 3.0 or
later.

1.1 Getting Started

This manual documents the Shishi application and library programming interface. All
commands, functions and data types provided by Shishi are explained.

The reader is assumed to possess basic familiarity with network security and the Kerberos
5 security system.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features and Status

Shishi might have a couple of advantages over other packages doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License version 3.0 or later.

It’s thread-safe
The library uses no global variables.

Chapter 1: Introduction 2

It’s internationalized

It handles non-ASCII username and passwords and user visible strings used in
the library (error messages) can be translated into the users’ language.

It’s portable

yet.

It should work on all Unix like operating systems, including Windows.

Shishi is far from feature complete, it is not even a full RFC 1510 implementation
However, some basic functionality is implemented. A few implemented feature are

mentioned below.

an

Initial authentication (AS) from raw key or password. This step is typically used to
acquire a ticket granting ticket and, less commonly, a server ticket.

Subsequent authentication (TGS). This step is typically used to acquire a server ticket,
by authenticating yourself using the ticket granting ticket.

Client-Server authentication (AP). This step is used by clients and servers to prove to
each other who they are, using negotiated tickets.

Integrity protected communication (SAFE). This step is used by clients and servers to
exchange integrity protected data with each other. The key is typically agreed on using
the Client-Server authentication step.

Ticket cache, supporting multiple principals and realms. As tickets have a life time of
typically several hours, they are managed in disk files. There can be multiple ticket
caches, and each ticket cache can store tickets for multiple clients (users), servers,
encryption types, etc. Functionality is provided for locating the proper ticket for every
use.

Most standard cryptographic primitives. The believed most secure algorithms are
supported (see Section 1.4 [Cryptographic Overview], page 5).

Telnet client and server. This is used to remotely login to other machines, after au-
thenticating yourself with a ticket.

PAM module. This is used to login locally on a machine.

KDC addresses located using DNS SRV RRs.

Modularized low-level crypto interface. Currently Gnulib and Libgcrypt are sup-
ported. If you wish to add support for another low-level cryptographic library, you
only have to implement a few APIs for DES, AES, MD5, SHA1, HMAC, etc. Look at
‘gl/gc-gnulib.c’ or ‘gl/gc-libgcrypt.c’ as a starting pointer.

The following table summarize what the current objectives are (i.e., the todo list) and
estimate on how long it will take to implement the feature, including some reasonable

startup-time to get familiar with Shishi in general. If you like to start working on anything,
please let me know so work duplication can be avoided.

Parse ‘/etc/krbb.keytab’ to extract keys to use for telnetd etc (week)
Cross-realm support (week).
PKINIT (use libksba, weeks)

Finish GSSAPI support via GSSLib (weeks) Shishi will not support GSSLib natively,
but a separate project “GSSLib” is under way to produce a generic GSS implementa-
tion, and it will use Shishi to implement the Kerberos 5 mechanism.

Chapter 1: Introduction 3

e Port to cyclone (cyclone need to mature first)

e Modularize ASN.1 library so it can be replaced (days). Almost done, all ASN.1 func-
tionality is found in lib/asnl.c, although the interface is rather libtasnl centric.

e KDC (initiated, weeks)

e LDAP backend for Shisa.

e Set/Change password protocol (weeks?)

e Port applications to use Shishi (indefinite)
e Finish server-realm stuff

e Improve documentation

e Improve internationalization

e Add AP-REQ replay cache (week).

e Study benefits by introducing a PA-TGS-REP. This would provide mutual authentica-
tion of the KDC in a way that is easier to analyze. Currently the mutual authentication
property is only implicit from successful decryption of the KDC-REP and the 4 byte
nonce.

e GUI applet for managing tickets. This is supported via the ticket-applet, of which a
Shishi port is published on the Shishi home page.

e Authorization library (months?) The shishi_authorized_p() is not a good solution,
better would be to have a generic and flexible authorization library. Possibly based on
S-EXP’s in tickets? Should support non-Kerberos uses as well, of course.

e Proof read manual.

e X.500 support, including DOMAIN-X500-COMPRESS. T will accept patches that im-
plement this, if it causes minimal changes to the current code.

1.3 Overview

This section describes RFC 1510 from a protocol point of view!.

Kerberos provides a means of verifying the identities of principals, (e.g., a workstation
user or a network server) on an open (unprotected) network. This is accomplished without
relying on authentication by the host operating system, without basing trust on host ad-
dresses, without requiring physical security of all the hosts on the network, and under the
assumption that packets traveling along the network can be read, modified, and inserted at
will. (Note, however, that many applications use Kerberos’ functions only upon the initia-
tion of a stream-based network connection, and assume the absence of any "hijackers" who
might subvert such a connection. Such use implicitly trusts the host addresses involved.)
Kerberos performs authentication under these conditions as a trusted third- party authen-
tication service by using conventional cryptography, i.e., shared secret key. (shared secret
key - Secret and private are often used interchangeably in the literature. In our usage, it
takes two (or more) to share a secret, thus a shared DES key is a secret key. Something is
only private when no one but its owner knows it. Thus, in public key cryptosystems, one
has a public and a private key.)

! The text is a lightly adapted version of the introduction section from RFC 1510 by J. Kohl and C.
Neuman, September 1993, copyright likely owned by the RFC 1510 authors or some contributor.

Chapter 1: Introduction 4

The authentication process proceeds as follows: A client sends a request to the authen-
tication server (AS) requesting "credentials" for a given server. The AS responds with
these credentials, encrypted in the client’s key. The credentials consist of 1) a "ticket" for
the server and 2) a temporary encryption key (often called a "session key"). The client
transmits the ticket (which contains the client’s identity and a copy of the session key, all
encrypted in the server’s key) to the server. The session key (now shared by the client and
server) is used to authenticate the client, and may optionally be used to authenticate the
server. It may also be used to encrypt further communication between the two parties or
to exchange a separate sub-session key to be used to encrypt further communication.

The implementation consists of one or more authentication servers running on physi-
cally secure hosts. The authentication servers maintain a database of principals (i.e., users
and servers) and their secret keys. Code libraries provide encryption and implement the
Kerberos protocol. In order to add authentication to its transactions, a typical network
application adds one or two calls to the Kerberos library, which results in the transmission
of the necessary messages to achieve authentication.

The Kerberos protocol consists of several sub-protocols (or exchanges). There are two
methods by which a client can ask a Kerberos server for credentials. In the first approach,
the client sends a cleartext request for a ticket for the desired server to the AS. The reply
is sent encrypted in the client’s secret key. Usually this request is for a ticket-granting
ticket (TGT) which can later be used with the ticket-granting server (TGS). In the second
method, the client sends a request to the TGS. The client sends the TGT to the TGS in the
same manner as if it were contacting any other application server which requires Kerberos
credentials. The reply is encrypted in the session key from the TGT.

Once obtained, credentials may be used to verify the identity of the principals in a
transaction, to ensure the integrity of messages exchanged between them, or to preserve
privacy of the messages. The application is free to choose whatever protection may be
necessary.

To verify the identities of the principals in a transaction, the client transmits the ticket
to the server. Since the ticket is sent "in the clear" (parts of it are encrypted, but this
encryption doesn’t thwart replay) and might be intercepted and reused by an attacker,
additional information is sent to prove that the message was originated by the principal to
whom the ticket was issued. This information (called the authenticator) is encrypted in the
session key, and includes a timestamp. The timestamp proves that the message was recently
generated and is not a replay. Encrypting the authenticator in the session key proves that
it was generated by a party possessing the session key. Since no one except the requesting
principal and the server know the session key (it is never sent over the network in the clear)
this guarantees the identity of the client.

The integrity of the messages exchanged between principals can also be guaranteed
using the session key (passed in the ticket and contained in the credentials). This approach
provides detection of both replay attacks and message stream modification attacks. It is
accomplished by generating and transmitting a collision-proof checksum (elsewhere called
a hash or digest function) of the client’s message, keyed with the session key. Privacy and
integrity of the messages exchanged between principals can be secured by encrypting the
data to be passed using the session key passed in the ticket, and contained in the credentials.

Chapter 1: Introduction 5

1.4 Cryptographic Overview

Shishi implements several of the standard cryptographic primitives. In this section we
give the names of the supported encryption suites, and some notes about them, and their
associated checksum suite.

Statements such as “it is weak” should be read as meaning that there is no credible
security analysis of the mechanism available, and/or that should an attack be published
publicly, few people would likely be surprised. Also keep in mind that the key size mentioned
is the actual key size, not the effective key space as far as a brute force attack is concerned.

As you may infer from the descriptions, there is currently no encryption algorithm and
only one checksum algorithm that inspire great confidence in its design. Hopefully this will
change over time.

NULL

NULL is a dummy encryption suite for debugging. Encryption and decryption
are identity functions. No integrity protection. It is weak. It is associated with
the NULL checksum.

arcfour-hmac

arcfour-hmac-exp
arcfour-hmac-* are a proprietary stream cipher with 56 bit (arcfour-hmac-
exp) or 128 bit (arcfour-hmac) keys, used in a proprietary way described in an
expired IETF draft ‘draft-brezak-win2k-krb-rc4-hmac-04.txt’. Deriving
keys from passwords is supported, and is done by computing a message digest
(MD4) of a 16-bit Unicode representation of the ASCII password, with no salt.
Data is integrity protected with a keyed hash (HMAC-MD5), where the key is
derived from the base key in a creative way. It is weak. It is associated with
the arcfour-hmac-md5 checksum.

des—-cbc-none
des-cbc-none is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. It is weak, because it offers no
integrity protection. This is typically only used by RFC 1964 GSS-API im-
plementations (which try to protect integrity using an ad-hoc solution). It is
associated with the NULL checksum.

des-cbc-crc
des-cbc-crc is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using the key as IV (see Section B.4 [Key as initialization
vector|, page 243). The keys can be derived from passwords by an obscure
application specific algorithm. Data is integrity protected with an unkeyed but
encrypted CRC32-like checksum. It is weak. It is associated with the rsa-md5-
des checksum.

des-cbc-md4
des-cbc-md4 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. Data is integrity protected with

Chapter 1: Introduction 6

an unkeyed but encrypted MD4 hash. It is weak. It is associated with the
rsa-md4-des checksum.

des—-cbc-mdb5
des-cbc-md5 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. Data is integrity protected with
an unkeyed but encrypted MD5 hash. It is weak. It is associated with the rsa-
md5-des checksum. This is the strongest RFC 1510 interoperable encryption
mechanism.

des3-cbc-none

des3-cbc-none is DES encryption and decryption with three 56 bit keys (ef-
fective key size 112 bits) and 8 byte blocks in CBC mode. The keys can be
derived from passwords by the same algorithm as des3-cbc-shal-kd. It is
weak, because it offers no integrity protection. This is typically only used by
GSS-API implementations (which try to protect integrity using an ad-hoc so-
lution) for interoperability with some existing Kerberos GSS implementations.
It is associated with the NULL checksum.

des3-cbc-shal-kd

des3-cbc-shal-kd is DES encryption and decryption with three 56 bit keys
(effective key size 112 bits) and 8 byte blocks in CBC mode. The keys can
be derived from passwords by a algorithm based on the paper "A Better Key
Schedule For DES-like Ciphers"? by Uri Blumenthal and Steven M. Bellovin
(it is not clear if the algorithm, and the way it is used, is used by any other
protocols, although it seems unlikely). Data is integrity protected with a keyed
SHA1 hash in HMAC mode. It has no security proof, but is assumed to provide
adequate security in the sense that knowledge on how to crack it is not known
to the public. Note that the key derivation function is not widely used outside
of Kerberos, hence not widely studied. It is associated with the hmac-shal-
des3-kd checksum.

aes128-cts-hmac-shal-96

aes256-cts-hmac-shal-96
aes128-cts-hmac-shal-96 and aes256-cts-hmac-shal-96 is AES encryption
and decryption with 128 bit and 256 bit key, respectively, and 16 byte blocks in
CBC mode with Cipher Text Stealing. Cipher Text Stealing means data length
of encrypted data is preserved (pure CBC add up to 7 pad characters). The
keys can be derived from passwords with RSA Laboratories PKCS#5 Pass-
word Based Key Derivation Function 2%, which is allegedly provably secure in
a random oracle model. Data is integrity protected with a keyed SHA1 hash,
in HMAC mode, truncated to 96 bits. There is no security proof, but the
schemes are assumed to provide adequate security in the sense that knowledge
on how to crack them is not known to the public. Note that AES has yet to
receive the test of time, and the AES cipher encryption mode (CBC with Ci-
phertext Stealing, and a non-standard IV output) is not widely standardized

2 http://www.research.att.com/ smb/papers/ides.pdf
3 http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/

http://www.research.att.com/~smb/papers/ides.pdf
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/

Chapter 1: Introduction 7

(hence not widely studied). It is associated with the hmac-shal-96-aes128
and hmac-shal-96-aes256 checksums, respectively.

The protocol do not include any way to negotiate which checksum mechanisms to use,
so in most cases the associated checksum will be used. However, checksum mechanisms can
be used with other encryption mechanisms, as long as they are compatible in terms of key
format etc. Here are the names of the supported checksum mechanisms, with some notes
on their status and the compatible encryption mechanisms. They are ordered by increased
security as perceived by the author.

NULL

NULL is a dummy checksum suite for debugging. It provides no integrity. It is
weak. It is compatible with the NULL encryption mechanism.

arcfour-hmac-md5
arcfour-hmac-md5 is a keyed HMAC-MD5 checksum computed on a MD5 mes-
sage digest, in turn computed on a four byte message type indicator concate-
nated with the application data. (The arcfour designation is thus somewhat
misleading, but since this checksum mechanism is described in the same docu-
ment as the arcfour encryption mechanisms, it is not a completely unnatural
designation.) It is weak. It is compatible with all encryption mechanisms.

rsa-md4

rsa-md4 is a unkeyed MD4 hash computed over the message. It is weak, because
it is unkeyed. However applications can, with care, use it non-weak ways (e.g.,
by including the hash in other messages that are protected by other means). It
is compatible with all encryption mechanisms.

rsa-md4-des
rsa-md4-des is a DES CBC encryption of one block of random data and a
unkeyed MD4 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a
constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

rsa-md5

rsa-md5 is a unkeyed MD5 hash computed over the message. It is weak, because
it is unkeyed. However applications can, with care, use it non-weak ways (e.g.,
by including the hash in other messages that are protected by other means). It
is compatible with all encryption mechanisms.

rsa-mdb5-des
rsa-md5-des is a DES CBC encryption of one block of random data and a
unkeyed MD5 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a
constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

hmac-shal-des3-kd
hmac-shal-des3-kd is a keyed SHA1 hash in HMAC mode computed over
the message. The key is derived from the base protocol by the simplified key

Chapter 1: Introduction 8

hmac-shal-
hmac-shal-

derivation function (similar to the password key derivation functions of des3-
cbc-shal-kd, which does not appear to be widely used outside Kerberos and
hence not widely studied). It has no security proof, but is assumed to provide
good security. The weakest part is likely the proprietary key derivation function.
It is compatible with the des3-cbc-shal-kd encryption mechanism.

96-aes128

96-aes256

hmac-shal-96-aes* are keyed SHA1 hashes in HMAC mode computed over
the message and then truncated to 96 bits. The key is derived from the base
protocol by the simplified key derivation function (similar to the password key
derivation functions of aes*-cts-hmac-shal-96, i.e., PKCS#5). It has no
security proof, but is assumed to provide good security. It is compatible with
the aes*-cts-hmac-shal-96 encryption mechanisms.

Several of the cipher suites have long names that can be hard to memorize. For your
convenience, the following short-hand aliases exists. They can be used wherever the full
encryption names are used.

arcfour

des-crc

des-md4

des-md5
des

des3
3des

aes128

aes
aes25b6

Alias for arcfour-hmac.

Alias for des-cbc-crc.

Alias for des-cbc-md4.

Alias for des-cbc-md>5.

Alias for des3-cbc-shal-kd.

Alias for aes128-cts-hmac-shal-96.

Alias for aes256-cts—-hmac-shal-96.

1.5 Supported Platforms

Shishi has
line build

at some point in time been tested on the following platforms. On-
reports for each platforms and Shishi version 1is available at

http://autobuild. josefsson.org/shishi/.
1. Debian GNU/Linux 3.0 (Woody)

GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,

http://autobuild.josefsson.org/shishi/

Chapter 1: Introduction 9

10.

11.

12.

13.

14.

15.

16.

armv4l-unknown-linux-gnu, hppa-unknown-linux-gnu, hppa64-unknown-linux-
gnu, 1686-pc-linux-gnu, ia64-unknown-linux-gnu, m68k-unknown-linux-gnu,
mips-unknown-linux-gnu, mipsel-unknown-linux-gnu, powerpc-unknown-linux-
gnu, s390-ibm-linux-gnu, sparc-unknown-linux-gnu, sparc64-unknown-linux-
gnu.

Debian GNU /Linux 2.1

GCC 2.95.4 and GNU Make. armv4l-unknown-linux-gnu.

Tru64 UNIX

Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec-
osfb.1.

SuSE Linux 7.1

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

SuSE Linux 7.2a
GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.
SuSE Linux

GCC 3.22 and GNU Make. x86_64-unknown-linux-gnu (AMD64 Opteron
“Melody”).

RedHat Linux 7.2

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

RedHat Linux 8.0

GCC 3.2 and GNU Make. 1686-pc-linux-gnu.
RedHat Advanced Server 2.1

GCC 2.96 and GNU Make. i686-pc-linux-gnu.
Slackware Linux 8.0.01

GCC 2.95.3 and GNU Make. 1i686-pc-linux-gnu.
Mandrake Linux 9.0

GCC 3.2 and GNU Make. i686-pc-linux-gnu.

IRIX 6.5

MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

AIX 4.3.2

IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.
HP-UX 11

HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.
SUN Solaris 2.8

Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

NetBSD 1.6

GCC 2953 and GNU Make. alpha-unknown-netbsdl.6, i386-unknown-
netbsdelfl.6.

Chapter 1: Introduction 10

17. OpenBSD 3.1 and 3.2

GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, 1i386-unknown-
openbsd3. 1.

18. FreeBSD 4.7 and 4.8

GCC 2.954 and GNU Make. alpha-unknown-freebsd4.7, alpha-unknown-
freebsd4.8, i386-unknown-freebsd4.7, i386-unknown-freebsd4.8.

19. MacOS X 10.2 Server Edition
GCC 3.1 and GNU Make. powerpc-apple-darwiné.5.
20. Cross compiled to uClinux/uClibc on Motorola Coldfire.
GCC 3.4 and GNU Make m68k-uclinux-elf.

If you use Shishi on, or port Shishi to, a new platform please report it to the author (see
Section 1.9 [Bug Reports], page 11).

1.6 Getting help

A mailing list where users of Shishi may help each other exists, and you can reach it
by sending e-mail to help-shishi@gnu.org. Archives of the mailing list discussions,
and an interface to manage subscriptions, is available through the World Wide Web at
http://lists.gnu.org/mailman/listinfo/help-shishi.

1.7 Commercial Support
Commercial support is available for users of Shishi. The kind of support that can be
purchased may include:

e Implement new features. Such as support for some optional part of the Kerberos
standards, e.g. PKINIT, hardware token authentication.

e Port Shishi to new platforms. This could include porting Shishi to an embedded plat-
forms that may need memory or size optimization.

e Integrate Kerberos 5 support in your existing project.

e System design of components related to Kerberos 5.

If you are interested, please write to:

Simon Josefsson Datakonsult
Hagagatan 24

113 47 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provides support related to Shishi and would like to be mentioned here,
contact the author (see Section 1.9 [Bug Reports|, page 11).
1.8 Downloading and Installing

The package can be downloaded from several places, including;:

ftp://alpha.gnu.org/pub/gnu/shishi/

mailto:help-shishi@gnu.org
http://lists.gnu.org/mailman/listinfo/help-shishi
ftp://alpha.gnu.org/pub/gnu/shishi/

Chapter 1: Introduction 11

The latest version is stored in a file, e.g., ‘shishi-1.0.1.tar.gz’ where the ‘1.0.1’
indicate the highest version number.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

$ wget -q ftp://alpha.gnu.org/pub/gnu/shishi/shishi-1.0.1.tar.gz
$ tar xfz shishi-1.0.1.tar.gz

$ cd shishi-1.0.1/

$./configure

$ make
$ make install

After this you should be prepared to continue with the user, administration or program-
ming manual, depending on how you want to use Shishi.

A few configure options may be relevant, summarized in the table.

--disable-des

--disable-3des

--disable-aes

-—disable-md

-—disable—null

--disable-arcfour
Disable a cryptographic algorithm at compile time. Usually it is better to
disable algorithms during run-time with the configuration file, but this allows
you to reduce the code size slightly.

--disable-starttls
Disable the experimental TLS support for KDC connections. If you do not use
a Shishi KDC, this support is of no use so you could safely disable it.

--without-stringprep
Disable internationalized string processing.

For the complete list, refer to the output from configure --help.

1.9 Bug Reports

If you think you have found a bug in Shishi, please investigate it and report it.

e Please make sure that the bug is really in Shishi, and preferably also check that it
hasn’t already been fixed in the latest version.

e You have to send us a test case that makes it possible for us to reproduce the bug.

e You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Chapter 1: Introduction 12

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-shishi@josefsson.org’

1.10 Contributing

If you want to submit a patch for inclusion — from solve a typo you discovered, up to adding
support for a new feature — you should submit it as a bug report (see Section 1.9 [Bug
Reports], page 11). There are some things that you can do to increase the chances for it to
be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.
For code contributions, a number of style guides will help you:
e Coding Style. Follow the GNU Standards document (see (undefined) [top], page (un-
defined)).

If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code (see (undefined) [top], page (undefined))
before submitting your work.

e Use the unified diff format ‘diff -u’.
e Return errors. The only valid reason for ever aborting the execution of the program is

due to memory allocation errors, but for that you should call ‘shishi_xalloc_die’ to
allow the application to recover if it wants to.

e Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

e Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

e Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

e Supply a ChangeLog and NEWS entries, where appropriate.

Chapter 2: User Manual 13

2 User Manual

Usually Shishi interacts with you to get some initial authentication information like a pass-
word, and then contacts a server to receive a so called ticket granting ticket. From now on,
you rarely interacts with Shishi directly. Applications that needs security services instruct
the Shishi library to use the ticket granting ticket to get new tickets for various servers. An
example could be if you log on to a host remotely via ‘telnet’. The host usually requires
authentication before permitting you in. The ‘telnet’ client uses the ticket granting ticket
to get a ticket for the server, and then use this ticket to authenticate you against the server
(typically the server is also authenticated to you). You perform the initial authentication
by typing shishi at the prompt. Sometimes it is necessary to supply options telling Shishi
what your principal name (user name in the Kerberos realm) or realm is. In the example,
I specify the client name simon@JOSEFSSON . ORG.

$ shishi simon@JOSEFSSON.ORG
Enter password for ‘simon@JOSEFSSON.ORG’:
simon@JOSEFSSON. ORG:

Authtime: Fri Aug 15 04:44:49 2003

Endtime: Fri Aug 15 05:01:29 2003

Server: krbtgt/JOSEFSSON.ORG key des3-cbc-shal-kd (16)

Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: INITIAL (512)

$

As you can see, Shishi also prints a short description of the ticket received.

A logical next step is to display all tickets you have received (by the way, the tickets are
usually stored as text in ‘~/.shishi/tickets’). This is achieved by typing shishi --1list.
$ shishi --list
Tickets in ‘/home/jas/.shishi/tickets’:

jas@JOSEFSSON.ORG:

Authtime: Fri Aug 15 04:49:46 2003

Endtime: Fri Aug 15 05:06:26 2003

Server: krbtgt/JOSEFSSON.ORG key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)

Ticket flags: INITIAL (512)

jas@JOSEFSSON.ORG:

Authtime: Fri Aug 15 04:49:46 2003
Starttime: Fri Aug 15 04:49:49 2003
Endtime: Fri Aug 15 05:06:26 2003
Server: host/latte. josefsson.org key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)

2 tickets found.
$

As you can see, I had a ticket for the server ‘host/latte.josefsson.org’ which was
generated by ‘telnet’:ing to that host.

Chapter 2: User Manual 14

If, for some reason, you want to manually get a ticket for a specific server, you can use
the shishi --server-name command. Normally, however, the application that uses Shishi
will take care of getting a ticket for the appropriate server, so you normally wouldn’t need
this command.

$ shishi --server-name=user/billg --encryption-type=des-cbc-md4
jas@JOSEFSSON. ORG:

Authtime: Fri Aug 15 04:49:46 2003

Starttime: Fri Aug 15 04:54:33 2003

Endtime: Fri Aug 15 05:06:26 2003

Server: user/billg key des-cbc-md4 (2)

Ticket key: des-cbc-md4 (2) protected by des-cbc-md5 (3)
$

As you can see, I acquired a ticket for ‘user/billg’ with a ‘des-cbc-md4’ (see Section 1.4
[Cryptographic Overview|, page 5) encryption key specified with the ‘--encryption-type’
parameter.

To wrap up this introduction, lets see how you can remove tickets. You may want to do
this if you leave your terminal for lunch or similar, and don’t want someone to be able to
copy the file and then use your credentials. Note that this only destroy the tickets locally,
it does not contact any server and tell it that these credentials are no longer valid. So if
someone stole your ticket file, you must contact your administrator and have them reset
your account, simply using this parameter is not sufficient.

$ shishi --server-name=imap/latte.josefsson.org --destroy
1 ticket removed.

$ shishi --server-name=foobar --destroy

No tickets removed.

$ shishi --destroy

3 tickets removed.

$

Since the ‘--server-name’ parameter takes a long to type, it is possible to type the
server name directly, after the client name. The following example demonstrate a AS-REQ
followed by a TGS-REQ for a specific server (assuming you did not have any tickets from
the start).

$ src/shishi simon@latte.josefsson.org imap/latte.josefsson.org
Enter password for ‘simon@latte.josefsson.org’:
simon@latte. josefsson.org:

Acquired: Wed Aug 27 17:21:06 2003

Expires: Wed Aug 27 17:37:46 2003

Server: imap/latte.josefsson.org key aes256-cts-hmac-shal-96 (18)

Ticket key: aes256-cts-hmac-shal-96 (18) protected by aes256-cts-hmac-shal-96 (18)
Ticket flags: FORWARDED PROXIABLE (12)

$

Refer to the reference manual for all available parameters (see Section 4.6 [Parameters
for shishi], page 46). The rest of this section contains description of more specialized usage
modes that can be ignored by most users

Chapter 2: User Manual 15

2.1 Proxiable and Proxy Tickets

At times it may be necessary for a principal to allow a service to perform an operation on
its behalf. The service must be able to take on the identity of the client, but only for a
particular purpose. A principal can allow a service to take on the principal’s identity for a
particular purpose by granting it a proxy.

The process of granting a proxy using the proxy and proxiable flags is used to provide
credentials for use with specific services. Though conceptually also a proxy, users wishing
to delegate their identity in a form usable for all purpose MUST use the ticket forwarding
mechanism described in the next section to forward a ticket-granting ticket.

The PROXIABLE flag in a ticket is normally only interpreted by the ticket-granting
service. It can be ignored by application servers. When set, this flag tells the ticket-
granting server that it is OK to issue a new ticket (but not a ticket-granting ticket) with a
different network address based on this ticket. This flag is set if requested by the client on
initial authentication. By default, the client will request that it be set when requesting a
ticket-granting ticket, and reset when requesting any other ticket.

This flag allows a client to pass a proxy to a server to perform a remote request on its
behalf (e.g. a print service client can give the print server a proxy to access the client’s files
on a particular file server in order to satisfy a print request).

In order to complicate the use of stolen credentials, Kerberos tickets are usually valid
from only those network addresses specifically included in the ticket[4]. When granting a
proxy, the client MUST specify the new network address from which the proxy is to be
used, or indicate that the proxy is to be issued for use from any address.

The PROXY flag is set in a ticket by the TGS when it issues a proxy ticket. Application

servers MAY check this flag and at their option they MAY require additional authentication
from the agent presenting the proxy in order to provide an audit trail.

Here is how you would acquire a PROXY ticket for the service ‘imap/latte. josefsson.org’:

$ shishi jas@JOSEFSSON.ORG imap/latte.josefsson.org --proxy
Enter password for ‘jas@JOSEFSSON.ORG’:

libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON. ORG:

Authtime: Mon Sep 8 20:02:35 2003

Starttime: Mon Sep 8 20:02:36 2003

Endtime: Tue Sep 9 04:02:35 2003

Server: imap/latte.josefsson.org key des3-cbc-shal-kd (16)
Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: PROXY (16)

$

As you noticed, this asked for your password. The reason is that proxy tickets must be
acquired using a proxiable ticket granting ticket, which was not present. If you often need
to get proxy tickets, you may acquire a proxiable ticket granting ticket from the start:

$ shishi --proxiable

Enter password for ‘jas@JOSEFSSON.ORG’:
jas@JOSEFSSON. ORG:

Authtime: Mon Sep 8 20:04:27 2003

Chapter 2: User Manual 16

Endtime: Tue Sep 9 04:04:27 2003
Server: krbtgt/JOSEFSSON.ORG key des3-cbc-shal-kd (16)
Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)

Ticket flags: PROXIABLE INITIAL (520)

Then you should be able to acquire proxy tickets based on that ticket granting ticket,
as follows:

$ shishi jas@JOSEFSSON.ORG imap/latte.josefsson.org --proxy
libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:

Authtime: Mon Sep 8 20:04:27 2003

Starttime: Mon Sep 8 20:04:32 2003

Endtime: Tue Sep 9 04:04:27 2003

Server: imap/latte.josefsson.org key des3-cbc-shal-kd (16)
Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: PROXY (16)

$

2.2 Forwardable and Forwarded Tickets

Authentication forwarding is an instance of a proxy where the service that is granted is
complete use of the client’s identity. An example where it might be used is when a user logs
in to a remote system and wants authentication to work from that system as if the login
were local.

The FORWARDABLE flag in a ticket is normally only interpreted by the ticket-granting
service. It can be ignored by application servers. The FORWARDABLE flag has an inter-
pretation similar to that of the PROXIABLE flag, except ticket-granting tickets may also
be issued with different network addresses. This flag is reset by default, but users MAY
request that it be set by setting the FORWARDABLE option in the AS request when they
request their initial ticket-granting ticket.

This flag allows for authentication forwarding without requiring the user to enter a
password again. If the flag is not set, then authentication forwarding is not permitted, but
the same result can still be achieved if the user engages in the AS exchange specifying the
requested network addresses and supplies a password.

The FORWARDED flag is set by the TGS when a client presents a ticket with the
FORWARDABLE flag set and requests a forwarded ticket by specifying the FORWARDED
KDC option and supplying a set of addresses for the new ticket. It is also set in all tickets
issued based on tickets with the FORWARDED flag set. Application servers may choose to
process FORWARDED tickets differently than non-FORWARDED tickets.

If addressless tickets are forwarded from one system to another, clients SHOULD still
use this option to obtain a new TGT in order to have different session keys on the different
systems.

Here is how you would acquire a FORWARDED ticket for the service
‘host/latte. josefsson.org’:

$ shishi jas@JOSEFSSON.ORG host/latte.josefsson.org --forwarded
Enter password for ‘jas@JOSEFSSON.ORG’:

Chapter 2: User Manual 17

libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON. ORG:

Authtime: Mon Sep 8 20:07:11 2003

Starttime: Mon Sep 8 20:07:12 2003

Endtime: Tue Sep 9 04:07:11 2003

Server: host/latte. josefsson.org key des3-cbc-shal-kd (16)
Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: FORWARDED (4)

$

As you noticed, this asked for your password. The reason is that forwarded tickets must
be acquired using a forwardable ticket granting ticket, which was not present. If you often
need to get forwarded tickets, you may acquire a forwardable ticket granting ticket from
the start:

$ shishi —--forwardable
Enter password for ‘jas@JOSEFSSON.ORG’:
jas@JOSEFSSON.ORG:

Authtime: Mon Sep 8 20:08:53 2003

Endtime: Tue Sep 9 04:08:53 2003

Server: krbtgt/JOSEFSSON.ORG key des3-cbc-shal-kd (16)

Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: FORWARDABLE INITIAL (514)

$

Then you should be able to acquire forwarded tickets based on that ticket granting ticket,
as follows:
$ shishi jas@JOSEFSSON.ORG host/latte.josefsson.org --forwarded
libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:

Authtime: Mon Sep 8 20:08:53 2003

Starttime: Mon Sep 8 20:08:57 2003

Endtime: Tue Sep 9 04:08:53 2003

Server: host/latte.josefsson.org key des3-cbc-shal-kd (16)
Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)

Ticket flags: FORWARDED (4)
$

Chapter 3: Administration Manual 18

3 Administration Manual

Here you will learn how to set up, run and maintain the Shishi Kerberos server. Kerberos is
incompatible with the standard Unix ‘/etc/passwd’ password database!, therefor the first
step will be to create a Kerberos user database. Shishi’s user database system is called
Shisa. Once Shisa is configured, you can then start the server and begin issuing Kerberos
tickets to your users. The Shishi server is called ‘shishid’. After getting the server up and
running, we discuss how you can set up multiple Kerberos servers, to increase availability
or offer load-balancing. Finally, we include some information intended for developers, that
will enable you to customize Shisa to use an external user database, such as a LDAP server
or SQL database.

3.1 Introduction to Shisa

The user database part of Shishi is called Shisa. The Shisa library is independent of the
core Shishi library. Shisa is responsible for storing the name of your realms, the name
of your principals (users), accounting information for the users (i.e., when each account
start to be valid and when it expire), and the cryptographic keys each user have. Some
Kerberos internal data can also be stored, such as the key version number, the last dates for
when various ticket requests were made, the cryptographic salt, string-to-key parameters
and password for each user. Not all information need to be stored. For example, in some
situations it is prudent to leave the password field empty, so that somebody who manage to
steal the user database will only be able to compromise your system, and not other systems
were your user may have re-used the same password. On the other hand, you may already
store the password in your customized database, in which case being able to change it via
the Shisa interface can be useful.

Shisa is a small (a few thousand lines of C code) standalone library. Shisa does not
depend on the Shishi library. Because a user database with passwords may be useful for
other applications as well (e.g., GNU SASL), it may be separated into its own project later
on. You should keep this in mind, so that you don’t consider writing a Shisa backend for
your own database a purely Shishi specific project. You may, for example, chose to use the
Shisa interface in your own applications to have a simple interface to your user database.
Your experience and feedback is appreciated if you chose to explore this.

Note that the Shisa database does not expose everything you may want to know about a
user, such as its full human name, telephone number or even the user’s login account name
or home directory. It only store what is needed to authenticate a peer claiming to be an
entity. Thus it does not make sense to replace your current user database or ‘/etc/passwd’
with data derived from the Shisa database. Instead, it is intended that you write a Shisa
backend that export some of the information stored in your user database. You may be able
to replace some existing functionality, such as the password field in ‘/etc/passwd’ with a
Kerberos PAM module, but there is no requirement for doing so.

3.2 Configuring Shisa

The configuration file for Shisa is typically stored in ‘/usr/local/etc/shishi/shisa.conf’.
You do not have to configure this file, the defaults should be acceptable to first-time users.

1 And besides, Shishi is intended to work on non-Unix platforms as well.

Chapter 3: Administration Manual 19

The file is used to define where you user database reside, and some options such as making
the database read-only or whether errors detected when accessing the database should be
ignored. (The latter may be useful if the server is a remote LDAP server that may be
unavailable, and you want to fail over to a local copy of the database.)

The default will store the user database using directories and files, rooted by default in
‘/usr/local/var/shishi’. You may use standard file permission settings to control access
to the directory hierarchy. It is strongly recommended to restrict access to the directory.
Storing the directory on local storage (i.e., hard disk or removal media) is recommended.
We discourage placing the database on a network file system, but realize it can be useful in
some situations (see Section 3.7 [Multiple servers|, page 33).

See the reference manual (see Section 4.5 [Shisa Configuration|, page 45) for the details
of the configuration file. Again, you are not expected to need to modify anything unless
you are an experienced Shishi administrator.

3.3 Using Shisa

There is a command line interface to the Shisa library, aptly named ‘shisa’. You will
use this tool to add, remove and change information stored in the database about realms,
principals and keys. The tool can also be used to “dump” all information in the database,
for backup or debugging purposes. (Currently the output format cannot be read by any tool,
but functionality to do this will be added in the future, possibly as a read-only file-based
Shisa database backend.)

The reference manual (see Section 4.8 [Parameters for shisa], page 48) explains all pa-
rameters, but here we will give you a walk-through of the typical uses of the tool.

Installing Shishi usually create a realm with two principals; one ticket granting ticket for
the realm, and one host key for the server. This is what you typically need to get started,
but it doesn’t serve our purposes. So we start by removing the principals and the realm. To
do that, we need to figure out the name of the realm. The ‘--1ist’ or ‘--dump’ parameters
can be used for this. (Most “long” parameters, like ‘--dump’, have shorter names as well,
in this case ‘-d’, Section 4.8 [Parameters for shisal, page 48).

jas@latte:~$ shisa -d
latte
krbtgt/latte
Account is enabled.
Current key version 0 (0x0).
Key 0 (0x0).
Etype aes256-cts-hmac-shal-96 (0x12, 18).
Salt lattekrbtgt/latte.
host/latte
Account is enabled.
Current key version O (0x0).
Key 0 (0x0).
Etype aes256-cts-hmac-shal-96 (0x12, 18).
Salt lattehost/latte.
jas@latte:~$

Chapter 3: Administration Manual 20

The realm names are printed at column 0, the principal names are indented with one
‘TAB’ character (aka ‘\t’ or ASCII 0x09 Horizontal Tabulation), and the information about
each principal are indented with two ‘TAB’ characters. The above output means that there
is one realm ‘latte’ with two principals; ‘krbtgt/latte’ (which is used to authenticate
Kerberos ticket requests) and ‘host/latte’ (used to authenticate host-based applications
like Telnet). They were created during ‘make install’ on a host called ‘latte’.

If the installation did not create a default database for you, you might get an error
similar to the following.

jas@latte:~$ shisa -d

shisa: Cannot initialize ‘file’ database backend.
Location ‘/usr/local/var/shishi’ and options ‘N/A’.
shisa: Initialization failed:

Shisa database could not be opened.

jas@latte:™$

This indicate the database do not exist. For a file database, you can create it by simply
creating the directory, as follows. Note the access permission change with ‘chmod’. Typi-
cally the ‘root’ user would own the files, but as these examples demonstrate, setting up a
Kerberos server does not require root access. Indeed, it may be prudent to run all Shishi
applications as a special non-‘root’ user, and have all Shishi related files owned by that
user, so that any security vulnerabilities does not lead to a system compromise. (However,
if the user database is stolen, system compromises of other systems may be possible if you
use, e.g., Kerberos Telnet.)

jas@latte:”$ mkdir /usr/local/var/shishi
jas@latte:”$ chmod go-rwx /usr/local/var/shishi

Back to the first example, where you have a realm ‘latte’ with some principals. We
want to remove the realm to demonstrate how you create the realm from scratch. (Of
course, you can have more than one realm in the database, but for this example we assume
you want to set up a realm named the same as Shishi guessed you would name it, so the
existing realm need to be removed first.) The ‘--remove’ (short form ‘-r’) parameter is
used for this purpose, as follows.

jas@latte:~$ shisa -r latte host/latte
Removing principal ‘host/latte@latte’...
Removing principal ‘host/latte@latte’...done
jas@latte:~$ shisa -r latte krbtgt/latte
Removing principal ‘krbtgt/latte@latte’...
Removing principal ‘krbtgt/latte@latte’...done
jas@latte:”$ shisa -r latte

Removing realm ‘latte’...

Removing realm ‘latte’...done

jas@latte:"$

You may be asking yourself “What if the realm has many more principals?”. If you fear
manual labor (or a small ‘sed’ script, recall the format of ‘--1ist’?), don’t worry, there is
a ‘-—force’ (short form ‘-f’) flag. Use with care. Here is a faster way to do the above:

jas@latte:”$ shisa -r latte -f
Removing principal ‘krbtgt/latte@latte’...

Chapter 3: Administration Manual 21

Removing principal ‘krbtgt/latte@latte’...done
Removing principal ‘host/latte@latte’...
Removing principal ‘host/latte@latte’...done
Removing realm ‘latte’...

Removing realm ‘latte’...done

jas@latte:"$

You should now have a working, but empty, Shisa database. Let’s set up the realm
manually, step by step. The first step is to decide on name for your realm. The full story is
explained elsewhere (see Section 4.3 [Realm and Principal Naming], page 38) but the short
story is to take your DNS domain name and translate it to upper case. For example, if your
organization uses example.org it is a good idea to use EXAMPLE.ORG as the name of your
Kerberos realm. We’ll use EXAMPLE. ORG as the realm name in these examples. Let’s create
the realm.

jas@latte:~$ shisa -a EXAMPLE.ORG
Adding realm ‘EXAMPLE.ORG’...
Adding realm ‘EXAMPLE.ORG’...done
jas@latte:"$

Currently, there are no properties associated with entire realms. In the future, it may be
possible to set a default realm-wide password expiry policy or similar. Each realm normally
have one principal that is used for authenticating against the “ticket granting service” on
the Kerberos server with a ticket instead of using the password. This is used by the user
when she acquire a ticket for servers. This principal must look like ‘krbtgt/REALM’ (see
[Name of the TGS], page 41). Let’s create it.

jas@latte:~$ shisa -a EXAMPLE.ORG krbtgt/EXAMPLE.ORG
Adding principal ‘krbtgt/EXAMPLE.ORG@EXAMPLE.ORG’...
Adding principal ‘krbtgt/EXAMPLE.ORG@EXAMPLE.QORG’...done
jas@latte:"$

Now that wasn’t difficult, although not very satisfying either. What does adding a
principal mean? The name is created, obviously, but it also mean setting a few values in
the database. Let’s view the entry to find out which values.

jas@latte:~$ shisa -d
EXAMPLE.ORG
krbtgt/EXAMPLE.ORG
Account is enabled.
Current key version 0 (0x0).
Key 0 (0x0).
Etype aes256-cts-hmac-shal-96 (0x12, 18).
Salt EXAMPLE.ORGkrbtgt/EXAMPLE.ORG.
jas@latte:"$

To wuse host based security services like SSH or Telnet with Kerberos, each
host must have a key shared between the host and the KDC. The key is typically
stored in ‘/usr/local/etc/shishi/shishi.keys’. We assume your server is called
‘mail.example.org’ and create the principal. To illustrate a new parameter, we also
set the specific algorithm to use by using the ‘--encryption-type’ (short form ‘-E’)
parameter.

Chapter 3: Administration Manual 22

jas@latte:~$ shisa -a EXAMPLE.ORG host/mail.example.org -E des3
Adding principal ‘host/mail.example.org@EXAMPLE.ORG’...

Adding principal ‘host/mail.example.org@EXAMPLE.ORG’...done
jas@latte:~$

To export the key, there is another Shisa parameter ‘--keys’ that will print the key in
a format that is recognized by Shishi. Let’s use it to print the host key.

jas@latte:~$ shisa -d --keys EXAMPLE.ORG host/mail.example.org
EXAMPLE.ORG
host/mail.example.org
Account is enabled.
Current key version O (0x0).
Key 0 (0x0).
Etype des3-cbc-shal-kd (0x10, 16).

Keytype: 16 (des3-cbc-shal-kd)
Principal: host/mail.example.org
Realm: EXAMPLE.ORG

1QdA8hxdvOUHZN1iZJv7noMO2rXHV8gq
----- END SHISHI KEY-----

Salt EXAMPLE.ORGhost/mail.example.org.
jas@latte:"$

So to set up the host, simply redirect output to the host key file.

jas@latte:~$ shisa -d --keys EXAMPLE.ORG \
host/mail.example.org > /usr/local/etc/shishi/shishi.keys
jas@latte:™$

The next logical step is to create a principal for some user, so you can use your password
to get a Ticket Granting Ticket via the Authentication Service (AS) from the KDC, and
then use the Ticket Granting Service (TGS) from the KDC to get a ticket for a specific
host, and then send that ticket to the host to authenticate yourself. Creating this end-user
principle is slightly different from the earlier steps, because you want the key to be derived
from a password instead of being a random key. The ‘~-password’ parameter indicate this.
This make the tool ask you for the password.

jas@latte:~$ shisa -a EXAMPLE.ORG simon --password
Password for ‘simon@EXAMPLE.ORG’:

Adding principal ‘simon@EXAMPLE.ORG’...

Adding principal ‘simon@EXAMPLE.ORG’...done
jas@latte:~$

The only special thing about this principal now is that it has a password field set in the
database.

jas@latte:~$ shisa -d EXAMPLE.ORG simon --keys
EXAMPLE.ORG
simon
Account is enabled.
Current key version 0 (0x0).

Chapter 3: Administration Manual 23

Key 0 (0x0).
Etype aes256-cts-hmac-shal-96 (0x12, 18).

Keytype: 18 (aes256-cts-hmac-shal-96)
Principal: simon
Realm: EXAMPLE.ORG

Ja7ciNtrAI3gtodLaVDQ5zhcH58ffk0kS5tGAM7ILvM=

Salt EXAMPLE.ORGsimon.
Password foo.
jas@latte:™$

You should now be ready to start the KDC, which is explained in the next section (see
Section 3.4 [Starting Shishid], page 23), and get tickets as explained earlier (see Chapter 2
[User Manual|, page 13).

3.4 Starting Shishid

The Shishi server, or Key Distribution Center (KDC), is called Shishid. Shishid is respon-
sible for listening on UDP and TCP ports for Kerberos requests. Currently it can handle
initial ticket requests (Authentication Service, or AS), typically authenticated with keys
derived from passwords, and subsequent ticket requests (Ticket Granting Service, or TGS),
typically authenticated with the key acquired during an AS exchange.

Currently there is very little configuration available, the only variables are which ports
the server should listen on and an optional user name to setuid into after successfully
listening to the ports.

By default, Shishid listens on the ‘kerberos’ service port (typically translated to 88 via
‘/etc/services’) on the UDP and TCP transports via IPv4 and (if your machine support
it) IPv6 on all interfaces on your machine. Here is a typical startup.

latte:/home/jas/src/shishi# /usr/local/sbin/shishid
Initializing GNUTLS...

Initializing GNUTLS...done

Listening on IPv4:*:kerberos/udp...done

Listening on IPv4:*:kerberos/tcp...done

Listening on IPv6:*:kerberos/udp...failed

socket: Address family not supported by protocol
Listening on IPv6:*:kerberos/tcp...failed

socket: Address family not supported by protocol
Listening on 2 ports...

Running as root is not recommended. Any security problem in shishid and your host
may be compromised. Therefor, we recommend using the ‘--setuid’ parameter, as follows.

latte:/home/jas/src/shishi# /usr/local/sbin/shishid --setuid=jas
Initializing GNUTLS...

Initializing GNUTLS...done

Listening on IPv4:*:kerberos/udp...done

Listening on IPv4:*:kerberos/tcp...done

Chapter 3: Administration Manual 24

Listening on IPv6:*:kerberos/udp...failed
socket: Address family not supported by protocol
Listening on IPv6:*:kerberos/tcp...failed
socket: Address family not supported by protocol
Listening on 2 ports...

User identity set to ‘jas’ (22541)...

An alternative is to run shishid on an alternative port as a non-privileged user. To
continue the example of setting up the EXAMPLE.ORG realm as a non-privileged user from
the preceding section, we start the server listen on port 4711 via UDP on IPvA4.

jas@latte:~$ /usr/local/sbin/shishid -1 IPv4:*:4711/udp
Initializing GNUTLS...

Initializing GNUTLS...done

Listening on *:4711/tcp...

Listening on 1 ports...

shishid: Starting (GNUTLS €1.0.47)

shishid: Listening on *:4711/tcp socket 4

If you have set up the Shisa database as in the previous example, you can now acquire
tickets as follows.

jas@latte:”$ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711’ \
simon@EXAMPLE. ORG

Enter password for ‘simon@EXAMPLE.ORG’:

simon@EXAMPLE.ORG:

Authtime: Fri Dec 12 01:41:01 2003

Endtime: Fri Dec 12 01:57:41 2003

Server: krbtgt/EXAMPLE.ORG key aes256-cts-hmac-shal-96 (18)

Ticket key: aes256-cts-hmac-shal-96 (18) protected by aes256-cts-hmac-shal-96 (18)

Ticket flags: FORWARDED PROXIABLE RENEWABLE INITIAL (12)
jas@latte:"$

The output from Shishid on a successful invocation would look like:

shishid: Has 131 bytes from *:4711/udp on socket 4

shishid: Processing 131 from *:4711/udp on socket 4

shishid: Trying AS-REQ

shishid: AS-REQ from simon@EXAMPLE.ORG for krbtgt/EXAMPLE.ORGQ@EXAMPLE.ORG
shishid: Matching client etype 18 against user key etype 18

shishid: Have 511 bytes for *:4711/udp on socket 4

shishid: Sending 511 bytes to *:4711/udp socket 4 via UDP

shishid: Listening on *:4711/udp socket 4

You may use the -v’ parameter for Shishid and Shishi to generate more debugging
information.

To illustrate what an application, such as the Shishi patched versions of GNU Ish or
Telnet from GNU InetUtils, would do when contacting the host ‘mail.example.org’ we
illustrate using the TGS service as well.

jas@latte:”$ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711’ \
simon@EXAMPLE.ORG host/mail.example.org
simon@EXAMPLE. ORG:

Chapter 3: Administration Manual 25

Authtime: Fri Dec 12 01:46:54 2003

Endtime: Fri Dec 12 02:03:34 2003

Server: host/mail.example.org key des3-cbc-shal-kd (16)

Ticket key: des3-cbc-shal-kd (16) protected by aes256-cts-hmac-shal-96 (18)

Ticket flags: FORWARDED PROXIABLE (45398796)
jas@latte:"$

This conclude our walk-through of setting up a new Kerberos realm using Shishi. It is
quite likely that one or more steps failed, and if so we encourage you to debug it and submit
a patch, or at least report it as a problem. Heck, even letting us know if you got this far
would be of interest. See Section 1.9 [Bug Reports], page 11.

3.5 Configuring DNS for KDC

Making sure the configuration files on all hosts running Shishi clients include the addresses
of your server is tedious. If the configuration files do not mention the KDC address for a
realm, Shishi will try to look up the information from DNS. In order for Shishi to find that
information, you need to add the information to DNS. For this to work well, you need to set
up a DNS zone with the same name as your Kerberos realm. The easiest is if you own the
publicly visible DNS name, such as ‘example.org’ if your realm is ‘EXAMPLE.QORG’, but you
can set up an internal DNS server with the information for your realm only. If this is done,
you do not need to keep configuration files updated for the KDC addressing information.

3.5.1 DNS vs. Kerberos - Case Sensitivity of Realm Names

In Kerberos, realm names are case sensitive. While it is strongly encouraged that all realm
names be all upper case this recommendation has not been adopted by all sites. Some sites
use all lower case names and other use mixed case. DNS on the other hand is case insensitive
for queries but is case preserving for responses to TXT queries. Since "MYREALM",
"myrealm", and "MyRealm" are all different it is necessary that only one of the possible
combinations of upper and lower case characters be used. This restriction may be lifted in
the future as the DNS naming scheme is expanded to support non-ASCII names.

3.5.2 Overview - KDC location information

KDC location information is to be stored using the DNS SRV RR [RFC 2052]. The format
of this RR is as follows:

Service.Proto.Realm TTL Class SRV Priority Weight Port Target
The Service name for Kerberos is always "_kerberos".

The Proto can be either "_udp", "_tcp", or "_tls._tcp". If these SRV records are to
be used, a "_udp" record MUST be included. If the Kerberos implementation supports
TCP transport, a "_tcp" record MUST be included. When using "_tcp" with "_kerberos",
this indicates a "raw" TCP connection without any additional encapsulation. A "_tls._tcp"
record MUST be specified for all Kerberos implementations that support communication
with the KDC across TCP sockets encapsulated using TLS [RFC2246] (see Section B.1
[STARTTLS protected KDC exchanges|, page 234).

The Realm is the Kerberos realm that this record corresponds to.

TTL, Class, SRV, Priority, Weight, and Target have the standard meaning as defined in
RFC 2052.

Chapter 3: Administration Manual 26

As per RFC 2052 the Port number should be the value assigned to "kerberos" by the
Internet Assigned Number Authority (88).

3.5.3 Example - KDC location information

These are DNS records for a Kerberos realm ASDF.COM. It has two Kerberos servers,
kdcl.asdf.com and kdc2.asdf.com. Queries should be directed to kdcl.asdf.com first as per
the specified priority. Weights are not used in these records.

_kerberos._udp.ASDF.COM. IN SRV 0 O 88 kdcl.asdf.com.
_kerberos._udp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com.
_kerberos._tcp.ASDF.COM. IN SRV 0 0 88 kdcl.asdf.com.
_kerberos._tcp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com.
_kerberos._tls._tcp.ASDF.COM. IN SRV 0 O 88 kdcl.asdf.com.
_kerberos._tls._tcp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com.

3.5.4 Security considerations

As DNS is deployed today, it is an unsecure service. Thus the infor- mation returned by it
cannot be trusted.

Current practice for REALM to KDC mapping is to use hostnames to indicate KDC
hosts (stored in some implementation-dependent location, but generally a local config file).
These hostnames are vulnerable to the standard set of DNS attacks (denial of service,
spoofed entries, etc). The design of the Kerberos protocol limits attacks of this sort to
denial of service. However, the use of SRV records does not change this attack in any
way. They have the same vulnerabilities that already exist in the common practice of using
hostnames for KDC locations.

Implementations SHOULD provide a way of specifying this information locally without
the use of DNS. However, to make this feature worthwhile a lack of any configuration
information on a client should be interpretted as permission to use DNS.

3.6 Kerberos via TLS

If Shishi is built with support for GNUTLS, the messages exchanged between clients and
Shishid can be protected with TLS. TLS is only available over TCP connections. A full
discussion of the features TLS have is out of scope here, but in short it means the com-
munication is integrity and privacy protected, and that users can use OpenPGP, X.509 or
SRP (i.e., any mechanism supported by TLS) to authenticate themselves to the Kerberos
server. For details on the implementation, See Section B.1 [STARTTLS protected KDC
exchanges|, page 234.

3.6.1 Setting up TLS resume

Resuming earlier TLS session is supported and enabled by default. This improves the speed
of the TLS handshake, because results from earlier negotiations can be re-used. Currently
the TLS resu